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Abstract

Entropy generation due to buoyancy induced convection and conduction in a right angle trapezoidal enclosure filled with fluid saturated porous
medium has been performed numerically. Left vertical solid wall of the trapezoidal enclosure has a finite thickness and conductivity. The outside
temperature of the solid wall is higher than that of inclined wall, while horizontal walls are adiabatic. The governing Darcy and energy equations
are solved numerically using a finite difference method. The study is performed for different governing parameters including the Rayleigh number
(50 � Ra � 1000), inclination angle of the inclined wall of the enclosure (γ = 35◦, 45◦ and 60◦), dimensionless thickness of the solid vertical
wall (S = 0.05, 0.1 and 0.2), and thermal conductivity ratio (k = 0.1, 1.0 and 10). Entropy generation is calculated by using the obtained velocities
and temperature distributions from the computer code. Results are presented for the Bejan number, local and mean Nusselt numbers, streamlines,
isotherms, iso-Bejan lines and entropy generation contours. It is found that the most important parameters on heat transfer and fluid flow are
thermal conductivity ratio and dimensionless thickness of the solid wall of the enclosure. Thus, these parameters also generate entropy for the
whole system. It is also found that increasing the Rayleigh number decreases the Bejan number; however, heat transfer is an increasing function
of Rayleigh number.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Applications of porous media include utilization of geother-
mal energy, design of packed bed reactors, oil recovery, insu-
lation of buildings and cold storage, drying processes, energy
storage systems, solar collectors, heat exchangers, transpiration
cooling, powder metallurgy, solidification of binary alloys, agri-
cultural engineering, etc. These are some of applications and
the most of studies in porous media have been recently excel-
lently reviewed by Nield and Bejan [1], Ingham and Pop [2],
Ingham et al. [3] and Vafai [4].

The study for an inclined trapezoidal enclosure at different
inclination angles filled with a viscous fluid has been analyzed
by Lee [5]. He made a numerical analysis to solve the natu-
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ral convection heat transfer in an inclined trapezoidal enclosure
filled with viscous fluid for different Prandtl numbers Pr using
body-fitted coordinate systems. It was shown that for Ra > 104

and Pr > 0.1, the heat transfer, in a trapezoidal enclosure with
two symmetrical, inclined sidewalls of moderate aspect ratios,
is a strong function of the orientation angle of the cavity. Kumar
and Kumar [6] used parallel computation technique to analyze
the natural convection heat transfer in a trapezoidal enclosure
filled with a porous medium. The short bottom and the long
top walls are taken adiabatic, while the sloping walls are dif-
ferentially heated. They showed that the inclination of the side
wall substantially affects the flow and temperature distribu-
tions. Baytas and Pop [7] solved to Darcy and energy equation
in cylindrical coordinates using ADI method to analyze natu-
ral convection in a trapezoidal enclosure filled with a porous
medium. It has been observed that up to Rayleigh number
Ra = 100, a conduction-dominated regime prevails, and after-
wards a two-cellular convective flow regime takes place at the
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Nomenclature

Be Bejan number
g gravitational acceleration . . . . . . . . . . . . . . . . . m/s2

Gr Grashof number
H height of the enclosure . . . . . . . . . . . . . . . . . . . . . . . m
kf thermal conductivity of the fluid . . . . . . . . . W/m K
ks thermal conductivity of the solid . . . . . . . . W/m K
k thermal conductivity ratio (ks/kf )
K permeability of the porous medium . . . . . . . . . . m2

L length of bottom wall of the enclosure . . . . . . . . . m
Nu local Nusselt number
Num mean Nusselt number
Ns entropy generation number
Pr Prandtl number
Ra Rayleigh number for a porous medium
S′ thickness of the solid wall . . . . . . . . . . . . . . . . . . . . m
S dimensionless thickness of the solid wall
S′′′

gen entropy generation rate per unit volume . W/m3 K
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 (Th + Tc)/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u, v dimensional axial and radial velocities . . . . . . m/s
x, y dimensional coordinates . . . . . . . . . . . . . . . . . . . . . m

U , V dimensionless axial and radial velocities
X, Y dimensionless coordinates
�T temperature difference (Th − Tc) . . . . . . . . . . . . . . K

Greek letters

αm effective thermal diffusivity of the porous
medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s

β coefficient of thermal expansion . . . . . . . . . . . . K−1

γ inclination angle of inclined wall . . . . . . . . . . . . deg
θ non-dimensional temperature
υ kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . m2/s
μ dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . kg/m s
φ irreversibility distribution ratio
ψ stream function . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
Ψ non-dimensional stream function

Subscripts

c cold
f fluid
h hot
s solid
tilt angle 165◦. Moukalled and Acharya [8] studied the conju-
gate natural convection in a trapezoidal enclosure with a divider
attached to the inclined wall and filled with a viscous fluid.
Moukalled and Darwish [9] made a numerical work on natural
convection in a partitioned trapezoidal cavity using the spe-
cial momentum-weighted interpolation method (MWIM). They
used conductive partition and showed that the presence of baf-
fles decrease heat transfer as high as 70%. Other similar studies
on natural convection in trapezoidal cavities can be found in
Boussaid et al. [10], Van Der Eyden et al. [11], Kumar [12],
Papanicolaou and Belessiotis [13], Varol et al. [14], Peric [15]
and Hammami et al. [16]. It should be mentioned that in many
practical situations, especially those concerned with the design
of thermal insulation, conduction in the walls can have an im-
portant effect on the natural convection flow in the enclosure.

Minimization of entropy generation is a method for mod-
eling and optimizing of energy systems. It results in from the
analysis of the second law of thermodynamics. In earlier studies
related to the natural convection problem in triangular isosce-
les enclosures, only the first-law of thermodynamics was used.
However, the method of entropy generation combines from the
start the most important parameters of thermodynamics, heat
transfer and fluid mechanics. Fundamentals of entropy gener-
ation are presented by Bejan [17], San et al. [18], Rosen [19]
and Narusawa [20]. Mourad et al. [21] investigated the entropy
production due to heat transfer, mass transfer and fluid fric-
tion for the steady state laminar double diffusive convection in
an inclined square enclosure. Their results show that the total
entropy production increases with the thermal Grashof num-
ber and the buoyancy ratio for moderate values of the Lewis
numbers. Erbay et al. [22] numerically studied the entropy pro-
duction during the transient laminar natural convection in a
square enclosure which is heated either completely or partially
from the left-side wall and cooled from the opposite wall. They
found that the active sites in the completely heated case are at
the left bottom corner of the heated wall and the right top cor-
ner of the cooled wall at the same magnitudes. In the case of
partial heating, the active site is observed at the top corner of
the heated section. Yilbas et al. [23] analyzed the entropy pro-
duction due to natural convection in an enclosure heated from
bottom and cooled from the top wall with insulated vertical
walls. Baytas [24] made a study on the entropy production in an
inclined enclosure. He showed that entropy production strongly
depends on the inclination angle of the enclosure. Magherbi et
al. [25] analyzed the time dependent entropy production in a
differentially heated enclosure. Magnetohydrodynamic (MHD)
free convection and entropy production were investigated by
Mahmud and Fraser [26] who showed that both Rayleigh and
Hartmann numbers are strongly effective parameters on flow,
heat transfer and entropy production. However, the number of
studies of entropy generation in a conduction-convection (con-
jugate) system is extremely limited in the literature. In this
context, Ruocco [27] made a study to analysis the entropy gen-
eration due to jet impingement onto a plate and Varol et al. [28]
performed this analysis for a thick walled cavity.

Our principal aim in this study is to present theoretical re-
sults for entropy generation due to conjugate natural convec-
tion heat transfer in a right-angle trapezoidal enclosure filled
with a porous medium for different Rayleigh numbers, incli-
nation angles of the inclined wall of the cavity, thicknesses of
the solid vertical wall and thermal conductivity ratios. As seen
from the above literature survey the entropy generation due to
natural convection thick walled right-angle porous trapezoidal
enclosure has not been studied by researchers yet. Therefore,
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Fig. 1. (a) Schematical configuration with boundary conditions of right-angle trapezoidal cavity with thick left wall, (b) grid distributions for γ = 45◦ , (c) grid
distributions for γ = 35◦ , (d) grid distributions for γ = 60◦ .
the present study is important for understanding the relation-
ship between the solid and the fluid saturated porous medium
within the enclosure which can be observed in underground or
geological applications. It is also important to geophysics and
environmental sciences.

2. Physical model

Physical model for the present study is shown in Fig. 1(a)
with coordinates and boundary conditions. It is a right-angle
trapezoidal enclosure filled with a porous medium. The inclina-
tion angle of inclined wall is shown by γ . The model includes
a thick vertical wall which is heated (Th) from the outside with
an isothermal heater and its inclined wall is cooled (Tc), while
the top and bottom walls are insulated. The height of the enclo-
sure is denoted by H and its bottom length is given by L. It is
noticed that the analysis is made for the ratio H/L = 0.5 and
L = 1 for all cases. But the change of the length of top wall de-
pends on inclination angle of the enclosure. The thickness of
the solid vertical wall is denoted by S′.

3. Analysis

3.1. Governing equations

The following assumptions are made to obtain the governing
equations of the present geometry: the properties of the fluid
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and the porous medium are constant; the cavity walls are im-
permeable; the Boussinesq approximation and the Darcy law
model are valid; and the viscous drag and inertia terms of the
momentum and energy equations are neglected. With these as-
sumptions, the dimensional governing equations of continuity,
momentum and energy can be written as follows:

∂u

∂x
+ ∂v

∂y
= 0 (1)

∂u

∂y
− ∂v

∂x
= −gβK

υ

∂Tf

∂x
(2)

u
∂Tf

∂x
+ v

∂Tf

∂y
= αm

(
∂2Tf

∂x2
+ ∂2Tf

∂y2

)
(3)

and the energy equation for the solid vertical wall is:

∂2Ts

∂x2
+ ∂2Ts

∂y2
= 0 (4)

where x and y are the Cartesian coordinates measured along
the bottom wall and along the vertical hot wall of the cavity,
respectively, u and v are the velocity components along x and
y axes, Tf is the fluid temperature, g is the acceleration due
to gravity, Ts is the temperature of the solid vertical wall, K

is the permeability of the porous medium, αm is the effective
thermal diffusivity of the porous medium, β is the thermal ex-
pansion coefficient and υ is the kinematic viscosity. Introducing
the stream function ψ defined as

u = ∂ψ

∂y
, v = −∂ψ

∂x
(5)

Eqs. (1)–(4) can be written in non-dimensional form as

∂2Ψ

∂X2
+ ∂2Ψ

∂Y 2
= −Ra

∂θf

∂X
(6)

∂Ψ

∂Y

∂θf

∂X
− ∂Ψ

∂X

∂θf

∂Y
= ∂2θf

∂X2
+ ∂2θf

∂Y 2
(7)

for the fluid-saturated porous medium and

∂2θs

∂X2
+ ∂2θs

∂Y 2
= 0 (8)

for the solid vertical wall, respectively. Here Ra = gβK(Th −
Tc)L/αmυ is the Rayleigh number for the porous medium and
the non-dimensional quantities are defined as

X = x

L
, Y = y

L
, (U,V ) = (u, v)L

αm

, Ψ = ψ

αm

θf = Tf − Tc

Th − Tc

, θs = Ts − Tc

Th − Tc

(9)

3.2. Boundary conditions

The boundary conditions of Eqs. (6)–(8) are:

for all solid boundaries

Ψ = 0 (10a)

on the vertical wall (hot), 0 � Y � 0.5

θs = 1 (10b)
on the bottom wall (adiabatic), 0 � X � 1

∂θf

∂Y
= 0 (10c)

on the top wall (adiabatic)

∂θf

∂Y
= 0 (10d)

on the inclined wall (cold)

θf = 0 (10e)

for the interface between solid vertical wall and porous medium,

kf

∂θf

∂X
= ks

∂θs

∂X
(10f)

Physical quantities of interest in this problem are the local
Nusselt number Nu and the mean Num Nusselt number, which
are given by

Nu =
(

−∂θf

∂X

)
X=S

(11a)

Num = 1

H

H∫
0

Nudy (11b)

for the interface between the solid vertical wall and porous
medium.

4. Entropy generation

The non-equilibrium conditions due to the exchange of en-
ergy and momentum, within the fluid-saturated porous medium
and at the solid boundaries, cause a continuous entropy gen-
eration in the flow field of the porous enclosure. This entropy
generation is due to the irreversible nature of heat transfer and
viscosity effects, within the fluid and at the solid boundaries.
From the known temperature and velocity fields, volumetric
entropy generation can be calculated from the equation (Bay-
tas [24]),

S′′′
gen = kf

T 2
0

(∇T )2 + μ

KT0
(u2 + v2) (12)

By using the same dimensionless parameters given in Eq. (9),
the dimensionless entropy generation number Ns can be ex-
pressed as

Ns =
[(

∂θ

∂X

)2

+
(

∂θ

∂Y

)2]
+ φ

[(
∂Ψ

∂Y

)2

+
(

∂Ψ

∂X

)2]
(13)

In this equation, φ is defined as the irreversibility distribution
ratio

φ = μT0

kf

(
α2

m

K(�T )2

)
(14)

and its value is taken equal to 10−2 in all calculations. We no-
tice that Eq. (13) consists of two parts. The first part (first square
bracketed term) is the irreversibility due to finite temperature
gradient and generally termed as the heat transfer irreversibil-
ity (HTI). The second part (second square bracketed term) is the
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Table 1
Optimal grid dimensions for different inclination angles of the inclined wall at
k = 1.0, S = 0.1 and Ra = 1000

Inclination angle of the
inclined wall (γ )

Grid dimension
(X by Y )

Mean Nusselt number
(Num)

35◦ 51 × 36 5.176
101 × 71 5.603
151 × 106 5.881
201 × 141 5.752

45◦ 51 × 26 5.096
81 × 41 5.244
101 × 51 5.328
151 × 76 5.378

60◦ 51 × 16 4.814
101 × 31 5.067
151 × 46 5.188
201 × 61 5.238

contribution of fluid friction irreversibility (FFI) to entropy gen-
eration. The overall entropy generation, for a particular prob-
lem, is an internal competition between HTI and FFI. Usually,
free convection problems, at low and moderate Rayleigh num-
bers, are dominated by the heat transfer irreversibility. Entropy
generation number (Ns ) is important for generating entropy
profiles or maps but fails to give any idea whether fluid fric-
tion or heat transfer are dominate. The two parameters, namely,
the irreversibility distribution ratio (φ) and Bejan number (Be)
are achieving an increasing popularity among the researchers
of the Second-Law of Thermodynamics. Finally, it is noticed
that Bejan number (Be), which is the ratio of heat transfer ir-
reversibility to the entropy production number (Ns ), can be
mathematically expressed as

Be =
[(

∂θ
∂X

)2 + (
∂θ
∂Y

)2]
Ns

(15)

5. Numerical procedure

Eqs. (6)–(8) subject to the boundary conditions 10(a)–(f) are
integrated numerically using the finite-difference method. Nu-
merical simulations were carried out systematically in order
to determine the effects of four main parameters of the prob-
lem, namely: Rayleigh number Ra, thermal conductivity ratio
k (= ks/kf ), dimensionless thickness of the solid vertical wall
S (= S′/L) and the inclination angle of the inclined wall of
the enclosure γ on the flow and heat transfer characteristics.
The solution domain consists of grid points at which equa-
tions are applied. Table 1 shows optimal grid dimensions for
different inclination angles γ . To obtain a grid-independent so-
lution, different grid dimensions were obtained for each γ and
chosen grid dimensions were given inside dashed ellipsoid. As
shown in Table 1, 101 × 71 grid dimensions were chosen for
35◦, 101×51 grid dimensions for 45◦ and 101×31 grid dimen-
sions were chosen for 60◦. The inclined wall was approximated
with staircase-like zigzag lines [29,30]. As indicated above that
the ratio of H/L is equal to 0.5 for whole study and incli-
nation angle belongs to the inclined wall. Fig. 1(b)–(d) gives
the grid distributions forγ = 45◦, γ = 35◦ and γ = 60◦, re-
Table 2
Results for Ra = 100 to compare present results with literature

Inclination angle of the side wall (γ ) 15◦ 30◦ 45◦

Num (Baytas and Pop [33]) 2.95 2.62 2.23
Num (present) 2.872 2.585 2.217

spectively. As shown in these figures, the bold nodes are the
boundary nodes and they have Dirichlet boundary conditions.
Values of internal nodes are calculated using boundary values
via central finite-difference scheme. Regular grid was used for
whole domain and the distance between nodes are shown by
�x and �y in the x- and y-directions, respectively. The it-
eration process is terminated when the following condition is
satisfied∑
i,j

∣∣φm
i,j − φm−1

i,j

∣∣/∑
i,j

∣∣φm
i,j

∣∣ � 10−5 (16)

where m denotes the iteration step and φ stands for either θf ,
θs or Ψ .

5.1. Validation

Due to lack of suitable experimental results in the literature
pertaining to the present configuration, the obtained numeri-
cal results have been validated against the existing results for a
square cavity filled with a porous medium. Thus, a first compar-
ison for the mean Nusselt number Nu, as defined by Eq. (11b),
with those from the open literature has been made for a value
of Ra = 1000. These results can be found in our earlier two
publications, Varol et al. [31,32]. We made also a second com-
parison using the entropy generation results reported by Bay-
tas [24]. Comparison was performed with entropy generation
due to heat transfer irreversibility and total entropy generation
as shown in Fig. 2(a) (Ra = 100) and Fig. 2(b) (Ra = 1000). As
can be seen from this comparison the obtained results show ex-
tremely good agreement with those from the literature. A third
test was also performed to show validation of the numerical
code with that from the literature. The comparison is given in
Table 2. Results are compared with those of Baytas and Pop
[33] which is obtained for a parallelogram geometry filled with
a fluid saturated porous medium at different inclination angles
of the side wall. As can be seen from Table 2 the difference
between the present results and those from the literature is max-
imum 0.5%. Finally, we made another test for our code with
the study by Saeid [34] which is performed for the problem
of conjugate natural convection in a porous square enclosure.
Results are shown by streamlines and isotherms contour plots
in Fig. 3. All tests show that the results obtained using the
present code give good agreement with those from the literature
and it can be used with great confidence for further calcula-
tions.

6. Results and discussion

Entropy generation due to conjugate natural convection in
a thick-walled right-angle trapezoidal enclosure filled with a
porous medium has been numerically studied here. The govern-
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(a)

(b)

Fig. 2. Comparison of the total entropy generation number (Ns ) and entropy
generation due to HTI contours obtained with those of Baytas [24] (on the left)
and present code (on the right), (a) Ra = 100, (b) Ra = 1000.

ing parameters are: Rayleigh number, Ra = 50, 500 and 1000,
dimensionless thickness of the solid vertical wall, S = 0.05,
0.1 and 0.2, thermal conductivity ratio, k = 0.1, 1.0 and 10,
inclination angle of the inclined wall, γ = 35◦, 45◦ and 60◦.
We will first present results for the flow field with stream-
lines, temperature fields by isotherms and heat transfer by lo-
cal and mean Nusselt numbers, then we will present results
for the entropy generation due to HTI, the entropy genera-
tion due to FFI, iso-Bejan lines and Bejan number, respec-
tively.
(a)

(b)

Fig. 3. Comparison of streamlines and isotherms contours obtained with those
of Saeid [34] (on the left) and present study (on the right) for Ra = 1000, (a) k =
10, (b) k = 0.1.

6.1. Flow fields, temperature and entropy generation
distributions

Fig. 4 shows streamlines (on the left) and isotherms (on the
right) for different values of the Rayleigh number and S = 0.1,
k = 1.0 and γ = 45◦. It can be observed that the flow is uni-
cellular for all values of Rayleigh numbers considered. For
low Rayleigh numbers, isotherms are almost parallel to each
other. This indicates that the conduction mode of heat transfer
is dominant inside the porous region as shown from Fig. 4(a).
Thus, circle shaped single cell was formed in clockwise cir-
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(a)

(b)

(c)

Fig. 4. Streamlines (on the left) and isotherms (on the right) for S = 0.1, k = 1.0 and γ = 45◦ for different Rayleigh numbers, (a) Ra = 50, (b) Ra = 500,
(c) Ra = 1000.
culation direction with Ψmin = −1.39. The Rayleigh number
enhances the flow strength and oval shaped circulation cells
were formed (Fig. 4(b)). In other words, convection becomes
dominant for increasing Rayleigh number. The center of uni-
cellular cell moves towards to the right top corner with increas-
ing Rayleigh number. The right top corner plays effective role
on both flow and temperature distribution especially at high
Rayleigh numbers. Heated fluid circulates in clockwise rotation
and it impinges to the top of the inclined wall and it strati-
fies into the porous area. In this way, the fluid accelerates with
increasing Rayleigh number. Volume of the cold part of the
fluid inside the right bottom corner increases with increasing
Rayleigh number as seen from isotherms in Fig. 4 (b) and (c).
The isotherm plots show that the temperature gradient within
the solid wall increases with increasing Rayleigh number.

The entropy generation due to FFI and HTI are calculated
with Eq. (13) using converged values of streamfunction and
temperature. Results for entropy generation contours due to FFI
(on the left) and HTI (on the right) are shown in Fig. 5 for
the same governing parameters given in Fig. 4. Using of en-
tropy generation distribution, we can obtain information about
the active sides inside the enclosure and solid wall and main
contributors for entropy generation. Entropy generation due to
HTI also give information about the heat transport through the
inner side of the solid wall to the inclined wall of the trape-
zoidal enclosure. As it is shown in Fig. 5(a) the top right corner
and middle of the top and bottom walls are the active sites
which generates the entropy due to FFI. Thus, entropy genera-
tion spreads all over the cavity. Entropy generation concentrates
at the right top corner and it extends further along with increas-
ing Rayleigh number as seen from Fig. 5 (a)–(c) (on the right).
This is due to increasing of heat transfer. It means that more heat
is transported from these locations. Contours are almost paral-
lel to the bottom wall for low Rayleigh numbers in solid wall
but they show inclined trend with increasing Rayleigh num-
ber (Fig. 5 (b) and (c)). Entropy generation domain becomes
smaller with increasing Rayleigh number due to boundary layer
regime. Maximum values are given at the top right corner with
bold numbers that entropy generation due to HTI and FFI in-
creases with increasing Rayleigh number.
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(a)

(b)

(c)

Fig. 5. Entropy generation due to fluid friction irreversibility (on the left) and heat transfer irreversibility (on the right) for S = 0.1, γ = 45◦ and k = 1.0, (a) Ra = 50,
(b) Ra = 500, (c) Ra = 1000.
Fig. 6 illustrates the effects of thermal conductivity ratio on
streamlines and isotherms for S = 0.1, γ = 45◦ and Ra = 1000.
As it results from this figure, the thermal conductivity ratio of
the solid wall to fluid inside the porous media is an effective
parameter on both streamlines and isotherms. With the ther-
mal conductivity ratio parameter is increased the flow strength
also increases due to transport of more heat from the solid
wall. For k = 0.1 (Fig. 6(a)), which corresponds to a low wall
conductivity, the solid wall behaves as an insulation material
and the results resemble those of the study by Saeid [34].
On the contrary, there is no obstacle for transfer of heat from
outside to the porous media due to high conductivity ratio
(k = 10). In this case, streamlines elongates diagonally inside
the porous media. This result suggests that the thermal con-
ductivity ratio can be a parameter to control heat and fluid
flow.

Fig. 7 shows the streamlines (Fig. 7(a)) and isotherms
(Fig. 7(b)), entropy generation due to FFI ((Fig. 7(c)) and en-
tropy generation due to HTI (Fig. 7(d)) to examine the solid
wall thickness on flow fields, temperature distribution and en-
tropy generation for k = 1.0, γ = 45◦ and Ra = 1000. Results
are given for two values of the thickness of the solid wall as
S = 0.05 (on the left) and S = 0.2 (on the right). As seen from
these figures the wall thickness is an important parameter on
streamlines since the flow strength decreases with increasing
the thickness of the solid wall. The length of the main cell also
decreases with increasing of wall thickness. The thickness of
the wall directly affects the temperature distribution as given in
Fig. 7(b). The thick wall behaves as a curtain for heat transport
from outside of the thick wall to the fluid. The most flow re-
gion becomes cold due to the thick vertical wall. As presented
in Fig. 7(c) the thickness of the wall mostly affects the entropy
generation due to FFI. Concentration of entropy generation in-
creases at the right top corner and its value decreases due to
reduced heat transport with increasing of thickness of the solid
wall. Because increasing of the thickness of solid wall, de-
creases the flow area and heat transfer is mostly occurred by
conduction. Solid wall thickness mostly affects the inner flow
domain due to decreasing of HTI with flow strength as illus-
trated in Fig. 7(d).
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(a)

(b)

Fig. 6. Streamlines (on the left) and isotherms (on the right) for S = 0.1, γ = 45◦ and Ra = 1000, (a) k = 0.1, (b) k = 10.
Effects of inclination angle of the inclined wall on stream-
lines and isotherms and entropy generation are presented in
Fig. 8 (a)–(d) for γ = 35◦ (on the left) and γ = 60◦ (on the
right) at S = 0.1, k = 1.0 and Ra = 1000. For the smallest value
of inclination angle, the cavity becomes shallower and diago-
nally elongated single cell was observed with Ψmin = −8.42
(Fig. 8(a)). However, absolute value of streamfunction is de-
creased with increasing of inclination angle. Isotherms become
more parallel to the horizontal walls. However, temperature gra-
dient inside the solid wall is also affected by the change of
inclination angle as seen from Fig. 8(b). Entropy generation
due to FFI and HTI inside the enclosure is also affected by the
change of inclination angle of inclined wall as seen in Fig. 8
(c) and (d), respectively. Entropy generation due to FFI ex-
tends towards the middle of the porous region with increasing
of volume of enclosure. Maximum entropy is decreased with
increasing the inclination angle in both solid wall and the cav-
ity. These figures clearly indicate that the geometry with sharp
corner produces more entropy. It means that geometry is an im-
portant parameter on energy saving.

Iso-Bejan lines are plotted in Fig. 9 (a)–(c) for different in-
clination angles and two values of the Rayleigh numbers as
Ra = 50 (on the left) and Ra = 500 (on the right). As we men-
tioned above the Bejan number is defined as ratio of entropy
generation due to heat transfer irreversibility (HTI) to the total
entropy generation (Ns ). Thus, values of Bejan number changes
between 0 and 1. As seen from Fig. 9 all corners of the cav-
ity promote entropy generation. However, right bottom corner
and intersection of inclined and top wall are stronger contribu-
tors for entropy generation. At the middle of the enclosure and
at right corners, the entropy generation due to HTI becomes
dominant at Ra = 50 (on the left of the Fig. 9). By increasing
the Rayleigh number the fluid friction irreversibility becomes
dominant at right corner at top region. It means that with the in-
creasing of the Rayleigh number, entropy generation due to FFI
becomes stronger. Fig. 9 also indicates that a diagonal pattern is
observed and it becomes thinner with increasing of inclination
of the enclosure (on the right of Fig. 9).

6.2. Heat transfer

Heat transfer is evaluated by local and mean Nusselt number
as defined in Eqs. (11a) and (11b), respectively. Variation of the
local Nusselt number along the interface of solid and fluid for
different Rayleigh numbers and inclination angles is presented
in Fig. 10 for S = 0.1 and k = 1.0. It is seen that values of
local Nusselt number increases with increasing Rayleigh num-
ber due to increasing of incoming energy into the system. Their
values decrease from bottom to top almost linearly. But slope
of local Nusselt number is small at Ra = 50 due to conduc-
tion dominated heat transfer. They also decrease with increasing
of inclination angle due to increasing of volume of the enclo-
sure. Further, Fig. 11 shows the variation of the local Nusselt
number along the interface for different thermal conductivity
ratios. It is seen that local Nusselt number is almost constant
for low thermal conductivity ratio. In this case, the partition be-
haves as insulation material. However, values of local Nusselt
number increases with increasing of thermal conductivity ratio
due to increasing of energy transport. For the case of k = 10,
there is a low value of the local Nusselt number near the top of
the vertical wall due to decreasing of distance between hot and
cold walls. Fig. 11 also indicates that inclination angle is only
an effective parameter for high conductivity ratio as k = 10.
For lower values of conductivity ratio parameter it becomes in-
significant.
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(a)

(b)

(c)

(d)

Fig. 7. (a) Streamlines, (b) Isotherms, (c) entropy generation due to FFI, (d) entropy generation due to HTI at Ra = 1000, k = 1.0, γ = 45◦ for S = 0.05 (on the
left) and S = 0.2 (on the right).
Effects of thickness of the solid wall on local Nusselt num-
ber are illustrated in Fig. 12 for different inclination angle at
Ra = 1000 and k = 1.0. As seen from the figure the local Nus-
selt number increases with decreasing of the wall thickness due
to increasing of heat transport. Values are decreased linearly
depends on the temperature gradients. The figure also indicates
that the value of local Nusselt number will become constant
with further increasing of the wall thickness. Therefore, the in-
clination angle is an effective parameter for the lowest value
of wall thickness. We present results for the mean Nusselt
number at different thermal conductivity ratio and inclination
angle in Fig. 13 for S = 0.1. It can be seen that heat trans-
fer increases with increasing of thermal conductivity ratio and
Rayleigh number. But it decreases with increasing of inclina-
tion angle. The values of mean Nusselt number all coincide for
k = 0.1 due to insulating behavior of the solid wall. However,
thermal conductivity values become effective on heat transfer
only for k > 1.0 due to increasing of domination of convection
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(a)

(b)

(c)

(d)

Fig. 8. (a) Streamlines, (b) isotherms, (c) entropy generation due to FFI, (d) entropy generation due to HTI at Ra = 1000, k = 1.0, S = 0.1 for γ = 35◦ (on the left)
and γ = 60◦ (on the right).
mode of heat transfer. Conduction also becomes effective for
whole domain at Ra = 50 as seen from Fig. 13. Heat trans-
fer decreases with increasing the values of inclination angle
due to long distance from hot and cold walls. Further, Fig. 14
presents the variation of mean Nusselt number with Rayleigh
numbers at different wall thicknesses and inclination angles
for k = 1.0. This figure indicates that there is little difference
among mean Nusselt numbers for higher values of wall thick-
ness and low Rayleigh numbers due to conduction dominated
regime. On the contrary, the difference increases with increas-
ing Rayleigh number and decreasing of wall thicknesses. The
figure also shows that mean Nusselt number becomes constant
for higher values of wall thickness. For higher values of wall
thickness, variation of inclination angle on the mean Nusselt
number becomes insignificant and heat transfer increases with
decreasing of inclination angle.
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(a)

(b)

(c)

Fig. 9. Iso-Bejan lines at Ra = 50 (on the left) and Ra = 500 (on the right) for S = 0.1, k = 1.0, (a) γ = 35◦ , (b) γ = 45◦ , (c) γ = 60◦ .
Fig. 10. Variation of local Nusselt number along the vertical interface for dif-
ferent Rayleigh numbers and inclination angles at S = 0.1 and k = 1.0.

6.3. Bejan number and total entropy generation

As it is well known the Bejan number (Be) is the ratio be-
tween the heat transfer irreversibility and the total irreversibility
Fig. 11. Variation of local Nusselt number along the vertical interface for differ-
ent thermal conductivity ratios and inclination angles at Ra = 1000 and S = 0.1.

due to heat transfer and fluid friction. It is defined by Eq. (15).
The value of Be = 1 is the limit at which the heat transfer ir-
reversibility dominates, Be = 0 is the opposite limit at which
the irreversibility is dominated by fluid friction effects and
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Fig. 12. Variation of local Nusselt number along the vertical interface for dif-
ferent thicknesses of the solid wall and inclination angles at Ra = 1000 and
k = 1.0.

Fig. 13. Variation of mean Nusselt number with thermal conductivity ratio for
different Rayleigh numbers and inclination angles at S = 0.1.

Fig. 14. Variation of mean Nusselt number with Rayleigh number for different
thicknesses of the solid wall and inclination angles at k = 1.0.

Fig. 15. Variation of Bejan number with Rayleigh number for different thick-
nesses of the solid wall and inclination angles at k = 1.0.

Fig. 16. Variation of Bejan number with thermal conductivity ratio for different
Rayleigh numbers and inclination angles at S = 0.1.

Be = 0.5 is the case in which the heat transfer and fluid fric-
tion entropy production rates are equal (Varol et al. [28]). In
this context, the variation of Bejan number with Rayleigh num-
ber for different thickness of the vertical wall and inclination
angle at k = 1.0 is plotted in Fig. 15. This figure shows that the
Bejan number decreases with decreasing of wall thickness due
to increasing of domination of convection mode of heat trans-
fer. Increasing of Rayleigh number again decreases the Bejan
number. Higher values of Be are obtained for lower values of in-
clination angle. It also decreases with increasing of inclination
angle due to decreasing of entropy generation. However, Bejan
number becomes constant for higher values of thermal conduc-
tivity ratio as shown in Fig. 16 for S = 0.1. In other words,
higher value of thermal conductivity is not an effective param-
eter on Bejan number. It becomes constant at Ra = 50 due to
domination of both thermal conductivity and entropy genera-
tion owing heat transfer irreversibility. As indicated in Fig. 16
the Bejan number decreases with increasing of inclination angle
at the same Rayleigh number.

Finally, we presented the variation of the overall entropy
generation with the Rayleigh number at different inclination
angle of the inclined wall in Fig. 17 at k = 1.0 and S = 0.1.
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Fig. 17. Variation of entropy generation due to HTI and FFI with Rayleigh
number for different inclination angles at k = 1.0 and S = 0.1.

The presentation was performed for both entropy generation
due to HTI and FFI. The figure shows that variation of incli-
nation angle has a more important role on HTI than that of FFI
due to changing of distance between hot and cold walls. Their
values are decreased with increasing of inclination angle. Gen-
eral observation shows that entropy generation increases with
increasing Rayleigh number with the increasing of heat transfer
and fluid friction irreversibility.

7. Conclusion

Entropy generation due to conjugate natural convection heat
transfer in a thick walled right-angle trapezoidal enclosure filled
with a fluid-saturated porous medium has been numerically per-
formed using a finite difference method. Results are obtained
for different Rayleigh numbers, thicknesses of the solid wall,
inclination angles of inclined wall and thermal conductivity ra-
tios. The main conclusions can be listed as follows:

(i) Both flow fields and temperature distributions are affected
by the wall thickness, thermal conductivity ratio, inclina-
tion angle of the inclined wall and Rayleigh number.

(ii) Bejan number decreases with increasing Rayleigh num-
ber and thermal conductivity ratio. It becomes constant for
higher values of thermal conductivities. Thermal conduc-
tivity ratio enhances the heat transfer. It becomes signifi-
cant for k > 1.0 and high Rayleigh numbers.

(iii) Heat transfer increases with increasing Rayleigh number
and decreases with increasing the solid wall thickness. On
the contrary, lower Bejan number is obtained for lower val-
ues of wall thickness.

(iv) Main contributors for entropy generation are corners of
the trapezoidal enclosures. Entropy generation due to HTI
becomes stronger than that of entropy generation due to
FFI at the center of the cavity. In other words, geometrical
shape of the enclosure can be a control parameter from the
point of view of energy saving.

(v) Inclination angle of the inclined wall becomes insignifi-
cant for lower value of thermal conductivity.
The study can be extended for higher Rayleigh numbers, un-
steady and three-dimensional flows.
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